
Doing Applied Math with Mathematica
Douglas E. Baldwin — August 19, 2010

What is Mathematica?
Mathematica is a computer algebra system (CAS) and a

high-level programming language.Mathematica andMaple are
the most popular CASs internationally; the other CASs some-
times used by applied mathematicians are Maxima (formerly
Macsyma), Derive (discontinued in 2007), Axiom (forked in
2007 to OpenAxion and FriCAS), and FORM.

Frequently, as an applied mathematician, you’ll run into
problems where the algebra is too complicated for you to do
it by hand; problems where it’d take Mathematica less than a
minute and it’d take you 4 months to do the calculation and
another 6 months to check that it’s correct. While Mathemat-
ica is a very powerful tool, it isn’t a panacea. Usually the best
way to get Mathematica to solve your problem is to figure out
how you’d do it by hand and then tell Mathematica what to do
at each step.

Defining functions
Suppose you want to define f(x, y) =

√
x2 + y2, then there

are three main ways to implement this in Mathematica:

myF1[x_, y_] := Sqrt[x^2 + y^2];
myF2 = Function[{x,y}, Sqrt[x^2 + y^2]];
myF3 = Sqrt[#1^2 + #2^2]&;
{myF1[a, b], myF2[c, d], myF3[e, f]}{√

a2 + b2,
√

c2 + d2,
√

e2 + f2

}
The first is the standard way of defining a function and the sec-
ond two are pure function definitions — pure function are very
useful when using functional and rule-based programming.

The first thing to notice in Mathematica is that all built-in
functions start with a capital letter and use square brackets; so
begin all your functions and variables with a lower-case let-
ter. Parentheses are only used to group algebraic or logical ex-
pressions, such as (a + b)^15 or (a && b) || (c && d).
Curly braces are only used to make ordered lists, such as
{eskimo, Pi, {4, u}}.

There are several types of ‘equals’ in Mathematica that
you’ll likely use:

• a = 5 assigns a the value 5 and a=. clears a;
• a*x^2 + b*x + c == 0 is used in Solve, DSolve, etc.;
• 1 == 1. returns True even though the LHS is an integer

and the RHS is a float;
• 1 === 1. returns False because an integer isn’t the

SameQ as a float — note that === always returns either
True or False while == only does when both sides sim-
plify to literal values;

• a := Random[] is a delayed equal and will wait until a

is evaluated to compute the RHS, so Mathematica will
give a different random real number in [0, 1] each time a

is evaluated;
• there’s also not equal !=, add to +=, subtract from -=, and

up set ^=.
Let’s start with the Fibonacci sequence, which is defined by

Fn = Fn−1 + Fn−2, F0 = 0, and F1 = 1. You could just type:

fiboBad[n_] := fiboBad[n - 1] + fiboBad[n - 2];
fiboBad[0] = 0; fiboBad[1] = 1;

Here n_ is a ‘pattern object’: whenever Mathematica sees
fiboBad with a single object enclosed in square brackets, it
associates that object with the variable n when it evaluates the
RHS. There’s also the pattern object __ that matches one or
more objects and ___ that matches one, more, or no objects.

I called this definition of Fn “fiboBad” because it takes
O(Fn) operations to evaluate:

Timing[fiboBad[30]]

{3.766 seconds, 832 040}

A better definition is

fiboGood[n_Integer] := fiboGood[n] =
fiboGood[n - 1] + fiboGood[n - 2] /; n > 1;

fiboGood[0] = 0; fiboGood[1] = 1;
Timing[fiboGood[30]]

{5.42101 × 10−19 seconds, 832 040}

since it only takes O(n) operations. By typing n_Integer you
restrict the definition to objects that are integers and “/; n > 1”
further restricts it to integers that are greater than one. Restrict-
ing the pattern in function definitions is a very good program-
ming habit; but it’s only necessary if you’re planning to ‘over-
load’ the function or plan to distribute your code. If you want
to overload the definition of fiboGood, you might type

fiboGood[x_] := (GoldenRatio^x -
(1 - GoldenRatio)^x)/Sqrt[5];

Since Mathematica uses the first pattern that it matches,
fiboGood will use the recursive definition for integers and the
the closed-form expression for everything else. If you’d entered
the closed-form definition first, then the recursive definition
would never be used.

Mathematica loves lists
Mathematica loves functional programming and functional

programming loves lists — so Mathematica loves lists!
One of my favorite things is to Map functions onto the entries

of a list. For instance, I can square each entry of a list by map-
ping the pure function #^2& onto each entry of the list using
/@:

#^2& /@ {I, like, Pi, 2}

{−1, like2
, π2, 4}

Let’s suppose you want to discuss the concept of error with
your class (à la The Feynman Lectures on Physics). Say youwant
Mathematica to do 100, 400, and 1 600 trials of flipping a coin
30 times and comparing their histograms with the binomial dis-
tribution.

You might model a fair coin toss in Mathematica by

coinToss := If[Random[] < 0.5, 1, 0];

where 1 represents a “head” and 0 represents a “tail”. To get
the number of heads in 30 tosses, you might define

trial := Sum[coinToss, {30}];

or equivalently

trial := Plus @@ Table[coinToss, {30}];

The first definition of trial just uses Sum. The second defini-
tion uses Table — one of the functions you’ll use the most in
Mathematica — and the lower level functions Plus and Apply
(@@). Table is used to make lists of objects — for instance,
Table[Prime[ii], {ii, 100}] makes a list of the first one
hundred prime numbers. In the definition of trial you get a
list like {1, 0, 0, 1, 1, . . . , 0, 0}; to get a sum, you can just replace
the Head (which is List) with Plus by typing “Plus @@”. To see
why this works, it is helpful to see how Mathematica internally
represents what you type using FullForm:

FullForm[{a + b*x + c*x^2 == 0}]

gives

List[Equal[Plus[a,Times[b,x],
Times[c,Power[x,2]]],0]]

Now, let’s write a little function that does n trials and returns
the ratio of trials that have 0, 1, …, 30 heads:

coinHisto[n_Integer] :=
Module[{trials}, (* Local Variable *)

trials = Table[trial, {n}];
Return[

Table[{ii, Count[trials, ii]/n}, {ii, 0, 30}]
]] /; n > 0;

When you need to write a function with several steps, you
can use Module to hold these steps and protect any local
variables that you might need. In this case, you have two
steps and you’ll want to protect the local variable trials.
Here, Table[trial, {n}] just makes a list with n trials and
Table[{ii, Count[trials, ii]/n}, {ii, 0, 30}] makes
a list of lists where the first entry is the number of heads and
the second is the frequency that number of heads appeared.
You don’t actually need to use Return — since Module returns
the value of the last line — but it’s good programming practice.

If you want to plot a few histograms, say with 100, 400 and
1 600 trials, you can use ListPlot:

Show[Plot[Binomial[30, x]/2^30, {x, 0, 30}],
ListPlot[{coinHisto[100], coinHisto[400],

coinHisto[1600]}, PlotMarkers -> Automatic],
PlotRange -> All]

æ æ æ æ æ æ æ æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ æ æ æ æ æ æ æà à à à à à à
à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à à à à à à à à àì ì ì ì ì ì ì ì
ì

ì

ì

ì

ì

ì

ì

ì ì

ì

ì

ì

ì

ì ì
ì ì ì ì ì ì ì ì

5 10 15 20 25 30

0.05

0.10

0.15

The Show function allows you to combine the plots into a sin-
gle plot. Here Binomial[30, x]/2^30 is the probability mass
function (PMF) of the binomial distribution when each trial
consists of 30 tosses of a fair coin and PlotRange -> All en-
sures that the all the dots show up.

While this plot is nice, it doesn’t show that you expect the
difference between your histograms (of N trials) and the PMF of
the binomial distribution to be proportional to 1/

√
N. So let’s

do a hundred sets of trials for N = 100, 400, 1 600, and 6 400

and make a quartile plot of the histograms.

coinHistoQuartileLines[n_,m_]:=
Module[{data,quartiles,linesAndDots},

data = Transpose /@
Transpose[Table[coinHisto[n], {m}]];

quartiles =
{ #[[1, 1]],

Quantile[#[[2]], {0, 1/4, 1/2, 3/4, 1}]
}& /@ data;

linesAndDots =
{ Line[{{#[[1]],#[[2,1]]},{#[[1]],#[[2,2]]}}],

Point[{#[[1]],#[[2,3]]}],
Line[{{#[[1]],#[[2,4]]},{#[[1]],#[[2,5]]}}]

}& /@ quartiles;
Return[Flatten[linesAndDots]]];

Here I use the graphical primitives Line and Point, the func-
tion Quartile, the Part ([[…]]) function to select elements
from the lists, and a bunch of Maps (/@) and pure functions.

Then using m = 100, 400, 1 600, and 6 400 in

Show[Plot[Binomial[30, x]/2^30, {x, 0, 30}],
Graphics[{PointSize[Small],

coinHistoQuartileLines[m, 100]}],
PlotRange -> {0, 0.25}]

gives the Tufte-style quartile plots:

5 10 15 20 25 30

0.05

0.10

0.15

0.20

0.25

5 10 15 20 25 30

0.05

0.10

0.15

0.20

0.25

m = 100 m = 400

5 10 15 20 25 30

0.05

0.10

0.15

0.20

0.25

5 10 15 20 25 30

0.05

0.10

0.15

0.20

0.25

m = 1 600 m = 6 400

(If you haven’t already, I highly recommend reading Edward R.
Tufte’s The Visual Display of Quantitative Information 2nd ed.
and Envisioning Information.)

Pattern matching is your friend!
Suppose you’re given the Korteweg–de Vries equation,

ut + 6uux + uxxx = 0, (KdV)

which models phenomena with weak nonlinearity and weak
dispersion, and you want to verify that

u(x, t) = 2κ2 sech2
{κ(x − 4κ2t − x0)}

satisfies (KdV). You can enter (KdV) into Mathematica as

kdv = D[u[x,t], t] + 6*u[x,t]*D[u[x,t], x] +
D[u[x,t], {x, 3}];

If you try to type:

kdv /. u[x,t] :> 2*k^2*Sech[k*(x - 4*k^2*t - x0)]^2

you’ll get

ut + 12κ2 sech2
{κ(x − 4κ2t − x0)}ux + uxxx,

which isn’t what you wanted at all! Let’s use our friend
FullForm to figure out what went wrong:

FullForm[kdv]

gives

Plus[Derivative[0,1][u][x,t],
Times[6,u[x,t],Derivative[1,0][u][x,t]],
Derivative[3,0][u][x,t]]

Ah ha! So Mathematica didn’t replace the derivatives because
[u][x,t] is not the same pattern as u[x,t]. You can get
around this by using a pure function in your rule:

Simplify[kdv /. u -> Function[{x, t},
2*k^2*Sech[k*(x - 4*k^2*t - x0)]^2]]

returns 0, which is exactly what you wanted.

Real world example: Painlevé analysis
The Painlevé test is a popular method for determining if a

nonlinear partial differential equation (PDE) is likely to be com-
pletely integrable — that is, if it has special properties that al-
low it to be solved using the inverse scattering transform. A
differential equation has the Painlevé property if all the mov-
able singularities of all its solutions are poles — a singularity
is movable if it depends on the constants of integration. We’ll
test this by assuming that the solution is a Laurent series,

u(x, t) = gα(x, t)

1∑
k=0

uk(x, t)gk(x, t),

where α is a negative integer, and verifying that it’s the general
solution; since a Laurent series only has movable poles (and
possibly a movable essential singularity) then such a solution
doesn’t have any movable algebraic or logarithmic branch cuts
and so you say that it passes the Painlevé test.

First you need to determine what α is. So you substitute
u(x, t) = u0(x, t)gα(x, t) into the PDE and pull of the expo-
nents of g(x, t) (since there must be a balance from at least
two terms):

Exponent[kdv /.
u -> Function[{x, t}, u0[x,t]*g[x, t]^alpha],

g[x, t], List]

{−3 + α,−2 + α,−1 + α,−1 + 2α}

Clearly the balance must come from α − 3 and 2α − 1 so you
find that α = −2 and the dominant power of g(x, t) is −5. With
α = −2, you can solve for u0:

Solve[
Coefficient[kdv /. u -> Function[{x, t},

u0[x, t]*g[x, t]^-2], g[x, t], -5] == 0,
u0[x, t]]

gives u0(x, t) = −2g2
x(x, t). (We require that gx(x, t) ̸≡ 0

on the manifold g(x, t) = 0 so we can use the Cauchy–
Kovalevskaya theorem to give local existence and uniqueness
of the solution.)

Then, for the series to be a general solution, you need three
arbitrary functions in your series solution because (KdV) is a
third order PDE. Thus, you substitute

u(x, t) = −2g2
x(x, t)g−2(x, t) + ur(x, t)gr−2(x, t)

into (KdV) and determine at which r that ur(x, t) is arbitrary by
setting the coefficients of the dominant term (gr−5) to zero:

Factor[
Coefficient[

kdv /. u -> Function[{x, t},
-2*D[g[x, t], x]^2*g[x, t]^-2 +

ur[x, t]*g[x, t]^(r - 2)],
g[x, t], r - 5]] == 0

gives
(r − 6)(r − 4)(r + 1)ur(x, t)g3

x(x, t) = 0

Thus, ur(x, t) should be arbitrary when r = −1, 4, and 6;
the universal resonance at r = −1 corresponds to the arbi-
trary function g(x, t). For more complicated equation, you can
simplify your calculations by taking g(x, t) = x − h(t) by the
implicit function theorem (since g(x, t) is non-characteristic,
gx ̸≡ 0, on the manifold g(x, t) = 0).

Finally, you must verify that ur(x, t) really is arbitrary at
r = 4 and 6 by substituting u(x, t) = −2g2

x(x, t)g−2(x, t) +
u1(x, t)g−1(x, t)+ · · ·+u6(x, t)g4(x, t) into (KdV) and solving
for u1(x, t), …, u6(x, t).

theCoefRules =
{u[0] -> Function[{x, t}, -2*D[g[x, t], x]^2]};

seriesSoln =
Sum[u[ii][x, t]*g[x, t]^(ii - 2), {ii, 0, 6}] /.

theCoefRules;
eqs =

Table[
Coefficient[

kdv /. u -> Function[{x, t},
Evaluate[seriesSoln]], (* Why do I use *)

g[x, t], ii - 5] == 0, (* "Evaluate"? *)
{ii, 1, 6}];

Do[
Solve[eqs[[ii]] /. theCoefRules, u[ii][x, t]

] /. Rule[a_[var__], b_] :>
AppendTo[theCoefRules,

a -> Function[{var}, b]],
{ii, 1, 6}];

theCoefRules

gives u1(x, t) = 2gxx, u2(x, t) = −(gtg
2
x + 3gxg2

xx −
4g2

xgxxx)/(6g3
x), etc. Solve doesn’t find expressions for u4(x, t)

and u6(x, t); checking the equation for r = 4 and 6 you see that
u4(x, t) and u6(x, t) are indeed arbitrary:

Simplify[{eqs[[4]], eqs[[6]]} /. theCoefRules]

{True, True}

Therefore, you conclude that the KdV equation passes the
Painlevé test — you should check that it doesn’t have an essen-
tial movable singularity, but no one actually does.

