Sous vide cooking and chemistry

Douglas E. Baldwin

Department of Applied Mathematics
University of Colorado at Boulder

ACS Webinar — May 9, 2013
How often do you cook?

(a) Cook almost everyday.
(b) Not daily, but quite a lot.
(c) Only for special occasions.
(d) Almost never.
sous vide /su: ’vi:d/ adjectival & adverbial phr.
L20. [ORIGIN French, from sous under + vide vacuum.]
Of food: (prepared) by cooking in vacuumized pouches at precisely controlled temperatures.
Optimal food temperatures

- **Beef, lamb, and pork**
 - ~50 °C Rare
 - ~55 °C Medium-rare
 - ~60 °C Medium
 - >70 °C Well done

- **Fish and shellfish**
 - ~49 °C Medium-rare

- **Baked goods**
 - ~90 °C Breads, rolls, muffins, etc.
Common kitchen heat sources

\(-70 \, ^\circ C\) Slow-cooker

100 \, ^\circ C\) Boiling water

125–200 \, ^\circ C\) Oven

150–250 \, ^\circ C\) Skillet

200–350 \, ^\circ C\) Grill

1500–2000 \, ^\circ C\) Blowtorch
Sous vide cooking:

- Cook at the food’s optimal temperature.
- If 55 °C is medium-rare,
 then use a 55 °C water-bath
 ⇒ meat can’t exceed 55 °C
 ⇒ nothing overcooked
 ⇒ medium-rare from edge to edge
Vacuum-sealing benefits

► Removing air improves heat transfer
► Increases shelf-life
 • Food can’t be recontaminated
 • Inhibits off-flavors from oxidation
 • Reduces aerobic bacterial growth
► Improves nutrition and flavor
 • Stops flavor volatile evaporation
 • Stops nutrients leaching into water
Outline

- Soft-cooked eggs
 - Protein denaturation
- Beef chuck roast
 - How heating changes meat
 - Extended heating tenderizes
- Chicken breasts
 - Pasteurizing for safety
Protein denaturation
Protein denaturation

- Heat — cooking, baking, ...
- Mechanical agitation — whipping
- pH change — vinegar, lemon juice, ...
- Inorganic salts — curing and brining
- Organic compounds — alcohol marinades
- Detergents — cleanup
Yolk temperatures in 75 °C water

Measured yolk temperatures of 14 chicken eggs.
Reaction rate

- **Temperature**
 - Arrhenius reactions:
 - 10 °C increase roughly doubles rate
 - Yolk denaturation:
 - 1 °C increase roughly doubles rate

- **Catalysts**
 - Enzymes catalyze biochemical reactions

- **Concentration**
When you grill meat or poultry, do you
(a) always use a thermometer to see when it’s done,
(b) sometimes use a thermometer, or
(c) never use a thermometer?
Meat proteins

Meat’s about 75% water, 20% protein, and 5% fat and other substances.

Proteins:

- Muscle fibers
 - mostly myosin & actin
- Soluble proteins
 - mostly enzymes and myoglobin
- Connective tissue
 - mostly collagen, less elastin
Meat protein denaturing

In traditional cooking when heating:

- Muscle fibers shrink starting 35–40 °C up to ~80 °C
- Soluble proteins aggregate and gel starting ~40 °C and finishing ~60 °C
- Connective tissues shrink starting ~60 and more intensely above ~65 °C
Doneness

50 °C Rare — muscle fibers and soluble proteins start denaturing

55 °C Medium-rare — more muscle fibers and soluble proteins denature

60 °C Medium
— most soluble proteins denatured

>70 °C Well done
— connective tissue start denaturing
— muscle fibers squeeze out water
If you eat beef, do you prefer it

(a) rare,
(b) medium-rare,
(c) medium, or
(d) well done?
If 55 °C is medium-rare, why not cook at 55°C?

You can with sous vide cooking.
Holding meat at 55–60 °C for hours to days increases tenderness because
- Enzymes can catalyze connective-tissue protein hydrolysis
- Collagen slowly starts to denature around 51 to 53 °C
Beef chuck roast

55°C/131°F

1½ hr

3 hr

6 hr

12 hr

24 hr

48 hr
Meat flavor

1. Browning or Maillard reaction
 • Roast and savory flavors
 • Starts noticably \(~130\,^\circ\text{C}\)
 • Good browning starts \(~150\,^\circ\text{C}\)

2. Fat makes
 • lamb taste like lamb and
 • beef taste like beef.
Maillard reaction

- Complex reaction between amino acids and reducing sugars
- Produces hundreds of reaction by-products
- Reaction rate increased by
 - Increasing temperature
 - Adding a reducing sugar
 - Increasing the pH
Rapid browning methods

► Beef and lamb
 • Butane blowtorch
 • Very hot grill or broiler

► Chicken and pork
 • Pan with smoking-hot oil
 • Shimmering oil with 4% glucose wash
 • Very hot grill or broiler
Beef chuck roast

1. Preheat water to 55 °C for medium-rare
2. (OPTIONAL) Pre-sear with blowtorch or grill
3. Vacuum-seal roast in a large pouch
4. Put into water bath for 1–2 days
5. Remove from pouch and pat dry
6. Sear each side to a mahogany brown
7. Season and serve immediately
When do you stop cooking a chicken breasts?

(a) When it’s juices run clear.
(b) When it’s white when you cut into it.
(c) When it reaches 75 °C/165 °F.
(d) When it’s dry and stringy.
(e) Some other criteria.
Food microorganisms

- Spoilage
- Beneficial
- Pathogenic
Many ways to reduce pathogens

- Heat — both time and temp important
- Inorganic salts — curing
- pH changes — acidifying
- Herbs and spices — essential oils
- Mechanical agitation — very high pressures
- Alcohol — marinades
- Ionizing radiation — not for home kitchens
“Danger Zone”?

- Traditional “danger zone” is 5 to 60 °C
- Food pathogens don’t grow below —1.3 °C
- Food pathogens don’t grow above 52.3 °C
- Dangerous growth takes days at 5 °C
- Pasteurization takes 43 min at 60 °C but 3 hr 20 min at 55 °C
Pasteurization reduces risk

- Reduce but can’t eliminate pathogens
- Healthy may need 10^5 to 10^9 to get sick
- Immunocompromised 1–10/g to get sick
- 15–20% of US immunocompromised
- $10^6 \rightarrow 1$ reduction usually recommended
Pathogens of interest

- *Salmonella* species
- Pathogenic strains of *Escherichia coli*
- *Listeria monocytogenes* — the toughest
 - $10^6 \rightarrow 1$ after 2 min at 70 °C
 - $10^6 \rightarrow 1$ after 20 min at 62.5 °C
 - $10^6 \rightarrow 1$ after 200 min at 55 °C
- Spore forms, like the *Clostridium* species
Sous vide chicken breasts

1. Preheat water bath to 60 °C.
2. Individually vacuum-seal the breasts.
3. Put sealed pouches in water bath.
4. Cook them for at least 2 hours.
5. Remove from bath and pouches. Pat dry.
6. Sear in a skillet with smoking-hot oil.
7. Serve immediately.
Balance time and temperature

- Doneness
 - Temperature
- Texture
 - Time

Safety
Pork chops

- Medium-rare to medium \Rightarrow 55–60 °C
- Moderately tender
 \Rightarrow short to moderate cooking times
- 60 °C & 20 mm thick
 \Rightarrow 1½ hours to pasteurize
Filet mignon

- Rare to medium-rare \Rightarrow 50–55 °C
- Prized tenderness \Rightarrow short cooking time
- 50–55 °C & short time \Rightarrow can’t pasteurize
 \Rightarrow healthy people only
- 50 °C \Rightarrow pathogen growth
 \Rightarrow minimize time
- 55 °C \Rightarrow short time or mushy texture
Additional Resources

- www.DouglasBaldwin.com
 - Free sous vide cooking guide
 - YouTube video demos
- D.B.’s *Sous Vide for the Home Cook* (2010)
 - Over 200 recipes
 - Less technical than website or review article
- Other food science books:
 - N. Myhrvold et al.’s *Modernist Cuisine* (2011)